CONTROL GORGE POWER PLANT ### WATER QUALITY REPORT 2011 The 2011 Water Quality Report for Control Gorge Power Plant was prepared by the Los Angeles Department of Water and Power (LADWP). The report is required by the California Department of Public Health (CDPH) and was prepared in accordance with CDPH guidelines. The report gives information about drinking water at the Control Gorge Power Plant during the 2011 calendar year. The data are compared to the current State and Federal Standards. Only those constituents that were detected are listed. ### THE BOTTOM LINE The drinking water at Control Gorge is in compliance with all state and federal drinking water requirements. Only the following substances with primary standards were detected at low levels in the water supplied to Control Gorge Power Plant: arsenic, chlorine, fluoride, haloacetic acids, and radionuclides (alpha, beta, and uranium). The levels of these substances were far below the established maximum contaminant levels (MCLs), which are the health protective standards set by the United States Environmental Protection Agency (USEPA) and CDPH. For more information on these contaminants, please refer to the table "Primary Drinking Water Constituents Found in the Water". The additional data for lead and copper on this table are the results of at-the-tap monitoring conducted in 2010 as required by the Lead and Copper Rule Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. ### WHERE DOES MY WATER COME FROM? The term "source water" describes where LADWP obtains the water you drink. All drinking water, tap or bottled, comes from either surface water or groundwater sources. Surface water sources include rivers, lakes, streams, ponds, or reservoirs. Groundwater sources are springs or wells. Control Gorge Power Plant receives natural spring water. The domestic water supply comes exclusively from Bircham Canyon Spring, an artesian well located along Bircham Canyon Road near the plant. It is disinfected with chlorine to ensure bacterial quality of the water. It receives filtration treatment to remove turbidity and arsenic. ### WHY IS DRINKING WATER MONITORED AND TREATED? As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling USEPA's Safe Drinking Water Hotline (1-800-426-4791). In order to ensure that tap water is safe to drink, the USEPA and the CDPH prescribe regulations that limit the amount of certain contaminants in water provided by public water system. CDPH regulations also establish limits for contaminants in bottled water that must provide the same protection for public heath. Contaminants that may be present in source waters include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts, and metals, which can be naturally-occurring or result from urban storm run-off, industrial or domestic wastewater discharges, oil and gas production, mining or farming. <u>Pesticides and herbicides</u>, which may come from a variety of sources such as agriculture, urban storm water run-off, and residential uses. Organic chemicals, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water run-off, and septic systems. Radioactive contaminants, which can be naturally occurring or be a result of oil and gas production and mining activities. ### SPECIAL NOTICE TO IMMUNO-COMPROMISED CONSUMERS Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risks from infections. These people should seek advice about drinking water from their health care providers. USEPA/Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800 426-4791). ### TERMS USED IN THIS REPORT AL (Action Level) - Federal: The concentration of a contaminant that, if exceeded, triggers treatment or other requirements a water system must follow. DLR (Detection Limit for Reporting Purposes): The DLR is the lowest level at which all CDPH certified laboratories can accurately and reliably detect a compound. The DLR provides a standardized basis for reporting purposes. MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the PHGs and MCLGs (see below) as economically or technologically feasible. For certain contaminants, compliance with the MCL is based on the average of all samples taken throughout the year. MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. MRDL (Maximum Residual Disinfectant Level): The level of a disinfectant added for water treatment that may not be exceeded at the consumer's tap. ### MRDLG (Maximum Residual Disinfectant Level Goal): The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLs are set by the U.S. Environmental Protection Agency. NL (Notification Levels) - State: Health-based advisory levels established by CDPH for chemicals in drinking water that lack maximum contaminant levels (MCLs). When chemicals are found at concentrations greater than their notification levels, certain requirements and recommendations apply. PHG (Public Health Goal) - State: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. <u>Primary Drinking Water Standard or PDWS:</u> MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. <u>Secondary Drinking Water Standards</u>: These standards are based on aesthetic qualities such as taste, odor, and appearance, which affect customer acceptance. They are not considered a health risk if exceeded. TT (Treatment Technique): A required treatment process, which will reduce the level of a contaminant in drinking water. For example, the filtration process is a treatment technique used to reduce turbidity (the cloudiness of water) and microbial contaminants from water. High turbidities may be indicative of poor or inadequate filtration. ### MONITORING OF REGULATED CONSTITUENTS There are over 110 regulated constituents (or contaminants). Utilities monitor for each constituent at varying frequencies based on the type of constituent and the type of source water. For example, groundwater sources are generally sampled once every three years. Those constituents that pose acute risk require more frequent monitoring. Nitrate sampling is required annually, and bacteriological sampling is required monthly. Since most constituents are not detected in our water, only those constituents that are detected are listed in the tables. ### Arsenic On October 31, 2001, EPA announced the adoption of 10 ppb as the new arsenic standard in drinking water. This new standard is 5 times lower that the previous MCL of 50 ppb and was enforced in January 2006. The California Office of Environmental Health Hazard Assessment adopted a Public Health Goal of 0.004 ppb in April 2004. In November 2008, CDPH adopted the EPA arsenic standard as the new State drinking water standard for arsenic. Arsenic compliance is based on a running annual average For drinking water containing 10 ppb to 50 ppb, CDPH states that, "Some people who drink water containing arsenic in excess of the MCL over so many years could experience skin damage or problems with their circulatory system and may have an increase risk of getting cancer. While our drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. ### Lead in Drinking Water Elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Control Gorge Power Plant is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been unused for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead. ### Turbidity Turbidity is a measure of the cloudiness of water. We monitor it because it is a good indicator of the effectiveness of our filtration system. Turbidity has no health effects. However, high levels of turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches. ### MONITORING OF UNREGULATED CONSTITUENTS There are constituents found in drinking water that are not yet regulated. Some of these "unregulated constituents" are monitored because they could be candidates for future regulations or are of interest to our consumers. For more information regarding this report, please call Ms. Josefa V. Esparrago at (213) 367-0287 of the Water Quality Division ## CONTROL GORGE POWER PLANT - 2011 CALENDAR YEAR TABLE 1 # HEALTH-BASED PRIMARY DRINKING WATER CONSTITUENTS DETECTED IN TREATED WATER | Constituents/
Contaminants | Units | Contro
Water | Control Gorge
Water Quality | State Primary Standard (MCL) or [MRDL] | MEET
PRIMARY
STANDARD | State PHG
or (Federal
MRDLG
or MCLG) | Major Source in Drinking Water | |-------------------------------|-------|---|---|--|-----------------------------|---|--| | | | Range | Average | | | | | | Alpha Emitters (a) | pCi/L | 7.1 | 7.1 | 15 | YES | (0) | Erosion of natural deposits | | Arsenic | µg/L | <2-2.8 | 2.1 | 10 | YES | 0.004 | Natural hot springs; erosion of natural deposits | | Beta Emitters (a) | pCi/L | 4.3 | 4.3 | 50 | YES | (0) | Decay of natural deposits | | Fluoride | mg/L | 92.0 | 92.0 | 2 | YES | 1 | Erosion of natural deposits | | Uranium | pCi/L | 7.8 | 7.8 | 20 | YES | 0.43 | Erosion of natural deposits | | | | | | Distributi | Distribution System | | | | Lead (at-the-tap) (b) | mg/L | Number of samples exceeding AL = 0 in 5 | 90^{th} Percentile value = 6.9 | AL=15
(b) | YES | 2 | Internal corrosion of household water plumbing systems | | Copper (at-the-tap) (b) | µg/L | Number of samples exceeding AL = 0 in 5 | 90 th
Percentile
value =54 | AL=1300
(b) | YES | 170 | Internal corrosion of household water plumbing systems | | Chlorine Residual, Free | mg/L | 1.87 | 1.87 | [4] | YES | [4] | Disinfectant | | Haloacetic Acids (HAA5) | hg/L | 4.38 | 4.38 | 09 | YES | None | Disinfection by-product | | Turbidity (c) | NTO | %8.66 | 1.00 | II | YES | TT | Soil runoff | | | | | | | | | | ### 9 ## CONTROL GORGE POWER PLANT - 2011 CALENDAR YEAR ### TABLE 2 # AESTHETIC-BASED SECONDARY DRINKING WATER CONSTITUENTS DETECTED IN TREATED WATER | Constituents/
Contaminants | Units | Control Gorge
Water Quality | Gorge | State Secondary
MCL or Federal
Secondary MCL | MEET
SECONDARY
STANDARD? | Major Source in Drinking Water | |-------------------------------|-------|--------------------------------|---------|--|--------------------------------|---| | | | Range | Average | | | | | Chloride | mg/L | 32 | 32 | 200 | YES | Runoff/leaching from natural deposits; seawater influence | | Color | Units | 5.0 | 5.0 | 15 | YES | Naturally-occurring organic materials | | Odor | Units | 2.0 | 2.0 | 3 | YES | Naturally-occurring organic materials | | Hd | Units | 7.5 | 7.5 | 6.5 - 8.5 | YES | Natural constituents | | Specific Conductance | µS/cm | 391 | 391 | 1600 | YES | Natural constituents | | Total Dissolved Solids (TDS) | mg/L | 245 | 245 | 1000 | YES | Runoff/leaching from natural deposits | | Turbidity | NTU | 0.33 | 0.33 | 5 | YES | Soil runoff | | | | | | | | | ## CONTROL GORGE POWER PLANT - 2011 CALENDAR YEAR TABLE 3 ## UNREGULATED DRINKING WATER CONSTITUENTS DETECTED IN TREATED WATER | Constituents/Contaminants | Units | | Contr | Control Gorge Water Quality | |---------------------------|-------|-------|---------|--------------------------------| | | | Range | Average | Major Source in Drinking Water | | Alkalinity, Bicarbonate | mg/L | 181 | 181 | Natural constituent | | Boron NL = 1000 | ng/L | 191 | 191 | Erosion of natural deposit | | Calcium | mg/L | 18.9 | 18.9 | Natural constituent | | Magnesium | mg/L | 3.9 | 3.9 | Natural constituent | | Potassium | mg/L | 3.6 | 3.6 | Natural constituent | | Silica | mg/L | 52 | 52 | Erosion of natural deposit | | Sodium | mg/L | 57 | 57 | Natural constituent | ### Footnotes for Tables - Radioactivity was last analyzed in 2008 except for uranium. Groundwater is required to be tested only every six years. (a) = - At-the-tap monitoring was conducted in 2010 as required by the Lead and Copper Rule. Control Gorge Power Plant is in compliance since the 90th percentile concentration for all samples of lead and copper are below their respective action levels. The average lead and copper concentrations after chlorination in 2007 were 4.2 and 27 ug/l respectively. The next round of sampling will take place on 2013. =(q) - performance, systems must report the highest single measurement and the lowest monthly percentage of samples meeting the requirements For 2011, turbidity was sampled monthly from the Entry Point of Distribution. When reporting turbidity as an indicator of filtration specified for that technology. (c) ### Abbreviations for Tables mg/L = milligrams per Liter (equivalent to parts per million) NTU = Nephelometric Turbidity Units; Turbidity is a measure of cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants. **pCi/L** = picoCuries per Liter (a unit of radioactivity) ug/L = micrograms per Liter (equivalent to parts per billion) µS/cm = micro Siemens per centimeter TT = Treatment Technique